Economic Effects of Infrastructure

Naoyuki Yoshino Dean, Asian Development Bank Institute (ADBI) Professor Emeritus Keio University nyoshino@adbi.org

Infrastructure Finance: Use of long term domestic savings

Long term and Patient investors are needed

- 1. Bank deposits Bank loans (2-5 years)
- 2. Life insurance (20 years, 30 years)
- 3. Pension funds (20, 30, 40 years)

Long term financing

4, Asset Management of long term instruments

5. Financial education has to be developed

Regional Disparities of Economic Effects large differences in Spillover effects 1990 2010

Kg = public capital (infrastructure)

Spillover effects \rightarrow Return to investors

1956-60 1961-65 1966-70 1971-75 1976-80 1981-85

Direct Effect (Kg)	0.	.696	0.7	'37	0.63	38	0.508	0.359	0.275
Indirect Effect	: (Кр)	0.	.453	0.5	53	0.48	38	0.418	3 0.304	0.226
Indirect Effect	: (L)	1.	.071	0.9	07	0.74	10	0.580	0.407	0.317
20%Retur	ned	0.3	8048	0.2	292	0.245	56	0.1996	5 0.1422	0.1086
%Increment		4	3.8	39	9.6	38	.5	39.3	39.6	39.5
	1986	5 -90	199	1-95	19	96-00	20	001-05	2006-10	
		0.215		0.181		0.135		0.114	0.108	
		0.195		0.162		0.122		0.1	0.1	
		0.193		0.155		0.105		0.09	0.085	
	0	.0776	(0.0634		0.0454		0.038	0.037	
	3	36.1		35.0		33.6		33.3	34.3	ADBInstitute

Case Study: Southern Tagalog Arterial Road (STAR), Philippines Micro-data

- The Southern Tagalog Arterial Road (STAR) project in Batangas province, Philippines (south of Metro Manila) is a modified Built-Operate-Transfer (BOT) project.
- The 41.9 km STAR tollway was built to improve road linkage between Metro Manila and Batangas City, provide easy access to the Batangas International Port, and thereby accelerate industrial development in Batangas and nearby provinces.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Property	Property	Business	Business	Regulatory	Regulatory	User	User
	tax	tax	tax	tax	fees	fees	charge	charge
Treatment D	1.55535	0.736	1.067	0.438	1.372	0.924	0.990	0.364
	(1.263)	(0.874)	(1.316)	(1.407)	(1.123)	(1.046)	(1.095)	(1.028)
Treatment D	0.421**	-0.083	1.189***	0.991**	0.248***	-0.019	0.408***	-0.010
$\times \text{Period}_{t+2}$	(0.150)	(0.301)	(0.391)	(0.450)	(0.084)	(0.248)	(0.132)	(0.250)
Treatment D	0.447**	0.574***	1.264***	1.502***	0.449**	0.515***	0.317**	0.434**
\times Period _{t+1}	(0.160)	(0.118)	(0.415)	(0.542)	(0.142)	(0.169)	(0.164)	(0.167)
Treatment D	0 107***	0.570**	4 440***	1 C 1 1 ***	0 604**	0 640***	0.250	0 400
×	0.497	(0.223)	1.440	1.041	0.004	0.042	0.330	0.4ZZ
Period _{t0}	(0.128)	· · ·	(0.417)	(0.482)	(0.183)	(0.181)	(0.271)	(0.158)
Treatment D	4 00 4**	0.007	0.050**	4 770**	4 040**	0.020*	0.050	0 407
×	1.294	0.387	2.250	1.779	1.318	0.838		0.197
Period _{t-1}	(0.674)	(0.728)	(0.957)	(0.470)	(0.649)	(0.448)	(0.714)	(0.560)
Treatment D	4 400*	0.000	0 000**	4 00 4**	4 400**	4 0 4 4 **	0.044	0.047
×	1.163"	0.336	2.226**	1.804**	1.482***	1.044**	0.941	0.247
Period _{t-2}	(0.645)	(0.594)	(0.971)	(0.531)	(0.634)	(0.413)	(0.704)	(0.531)
Treatment D	4 700*	0.450	0 705**	0 070+++	4 004 ***	4 000+++	4 700***	0.070
×	1.702*	0.450	2.785**	2.070***	1.901***	1.238***	1.732***	
Period _{t-3}	(0.980)	(0.578)	(1.081)	(0.544)	(0.630)	(0.369)	(0.598)	(0.515)
Treatment D								
×	2.573***	1.100	3.428***	2.560***	2.288***	1.509***	2.030***	0.787
Period _{t-4}	(0.900)	(0.758)	(0.928)	(0.350)	(0.563)	(0.452)	(0.607)	(0.745)
forward	()	、 ,	((,	((,	\ /	(/
		2.283**		1.577		1.207		1.942*
Construction		(1.172)		(1.196)		(0.855)		(1.028)
Constant	14.69***	-2.499	14.18***	2.230	13.66***	4.597	13.08***	-1.612
Constant	(0.408)	(8.839)	(0.991)	(9.094)	(0.879)	(6.566)	(0.649)	(7.84)
Ν	`80 ´	`73 ´	` 79 [′]	`73 ´	80	7 3 ′	`77 [′]	73
R^2	0.29	0.41	0.37	0.44	0.43	0.50	0.26	0.39

Difference-in-Difference Regression: Spillover

Clustered standard errors, corrected for small number of clusters; * Significant at 10%. ** Significant at 5%. *** Significant at 1%.

The Southern Tagalog Arterial Road (STAR Highway), Philippines, Manila Tax Revenues in three cities Yoshino and Pontines (2015) ADBI Discussion paper 549

表 8 フィリピンの STAR 高速道路の影響のない地域と比較した事業税の増加額 (単位:100 万ペソ)

	t_2	<i>t</i> ₋₁	t_0	<i>t</i> ₊₁	t ₊₂	t ₊₃	<i>t</i> +4以降
Lipa 市	134.36	173.50	249.70	184.47	191.81	257.35	371.93
Ibaan 市	5.84	7.04	7.97	6.80	5.46	10.05	12.94
Batangas 市	490.90	622.65	652.83	637.89	599.49	742.28	1208.61

(出所) Yoshino and Pontines (2015)より筆 『作成

Completion

Return the spillover effects to Investors

The production technology of the private sector is represented by the following production function.

$$Y = f(K_p, L, K_G) \tag{1}$$

where Y denotes output (in value added) in the private sector. The output is produced by combining private capital stock, *Kp*, labor input, L, and infrastructure stock, K_G.

In this paper, we assume the translog production function.

$$\ln Y = \alpha_0 + \alpha_K \ln K_p + \alpha_L \ln L + \alpha_G \ln K_G$$

$$+ \beta_{KK} (1/2) (\ln K_p)^2 + \beta_{KL} \ln K_p \ln L + \beta_{KG} \ln K_p \ln K_G$$

$$+ \beta_{LL} (1/2) (\ln L)^2 + \beta_{LG} \ln L \ln K_G + \beta_{GG} (1/2) (\ln K_G)^2$$

$$(2)$$

Assuming the production function represented by equation (1), and that factor prices and infrastructure are given for producers in the private sector, the effect of infrastructure on productivity is expressed as:

$$\frac{dY}{dK_G} = \frac{\partial Y}{\partial K_G} + \frac{\partial Y}{\partial K_P} \frac{\partial K_P}{\partial K_G} + \frac{\partial Y}{\partial L} \frac{\partial L}{\partial K_G}$$
(9)

Here, the effect of infrastructure is divided into three parts; the first term on the right hand side of equation (9) represents *direct effect*; the second term is the *indirect effect* on output with respect to the resulting change in the input of private capital and the third term is the *indirect effect* on output with respect to the resulting to the resulting effect on labor input.

10

Cross-border Infrastructure Investment Role of Multilateral Institution Large Country A City Country B Spillover effect, Promote SMEs

Spillover effect → Increase in Tax revenues

Uzbekistan Railway

Divide regions affected and not affected by railway connection to "Treated group" and "Control group"

Difference-in-difference: regression

• incorporating time varying covariates Control group $E[\Delta Y_{0it}|i, t, X_{it}] = \alpha + \gamma_i + \varphi_t + X'_{it}\beta$ Treated group $E[\Delta Y_{1it}|i, t, X_{it}] = E[Y_{0it}|i, t, X_{it}] + \delta$

•
$$\Delta Y_{it} = \alpha_i + \varphi_t + X'_{it}\beta + \delta (D_{rail} \times D_{post})_{it} + \epsilon_{it}$$

 ΔY_{it} - GDP growth rate

- α_i sum of autonomous (α) and region specific(γ_i) rate of growth
- φ_t year specific growth effect

 X_{it} -time varying covariates

- $(D_{rail} \times D_{post})_{it}$ -dummy variable indicating that observation belong to treated group after treatment period
- $\delta\text{-}$ difference in difference coefficient
- $\epsilon_{\it it}\text{-}\,\mathrm{error}\,\mathrm{term}$

GDP

GDP	Term	Connectivity effect	Regional effect	Spillover effect
Launching	Short	2.83***[4.48]	0.70[0.45]	1.33[1.14]
Ellects	Mid	2.5***[6.88]	0.36[0.29]	1.27[1.46]
	Long	2.06***[3.04]	-0.42[-0.29]	2.29**[2.94]
Anticipated	Short	0.19[0.33]	0.85[1.75]	-0.18[-0.20]
ar	Mid	0.31[0.51]	0.64[1.30]	-0.02[-0.03]
1 ye	Long	0.07[0.13]	-0.006[-0.01]	0.50[0.67]
Postponed Effect	S	1.76*[1.95]	-1.49[-0.72]	2.58*[2.03]
Anticipated	Short	-1.54[-1.66]	1.42[0.78]	-1.32[-0.92]
ars	Mid	0.32[0.44]	0.84[1.42]	0.13[0.13]
2 ye	Long	0.11[0.15]	0.10[0.16]	0.87[1.19]
Postponed Effect	S	-0.14[-0.20]	-1.71[-1.35]	1.05[1.44]

Note: t-values are in parenthesis. t-value measures how many standard errors the coefficient is away from zero.

legend: * p<.1; ** p<.05; *** p<.01

Naoyuki Yoshino - Umid Abidhadjaev. "Impact evaluation of infrastructure provision: case studies from Japan and Uzbekistan"

Additional tax revenue, Regional GDP growth and Railway Company Net Income, LCU (bln.)

Period	Coefficients	T(20)*∆Y (Tax revenue)	ΔY Affected (Direct + Spillover effects)	Company net income (Revenue - Costs)
Short term (2009-2010)	2.83*** [4.48]	16.0	79.9	315.5
Mid-term (2009-2011)	2.48*** [6.88]	16.3	81.5	411.7
Long-term (2009-2012)	2.06*** [3.04]	14.7	73.5	509.0

Source: Authors' calculatios

Japanese Bullet Train

Impact of Kyushu Shinkansen Rail on CORPORATE TAX revenue during 1st PHASE OF OPERATION period $\{2004-2010\}$, mln. JPY (adjusted for CPI, base 1982)

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2
9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	8	8	8	8	8	8	8	9	9	9	9	9	9	9	9	9	9	0	0	0	0	0	0	0	0	0	0	1	1	1	1
2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3

COMPOSITION OF GROUPS

Variable	Regression 1	Regression 2	Regression 3	Regression 4	Regression 5	Group2	Group5
Treatment2	-4772.54					Kagoshima	Kagoshima
	[-0.2]					Kumamoto	Kumamoto
Number of tax							Fukuoka
payers	5.8952514*	5.8957045*	5.896112*	5.8953585*	5.8629645*	Group3	Oita
	[1.95]	[1.95]	[1.95]	[1.95]	[1.91]	Kagoshima	Miyazaki
Treatment3		-15947.8				Kumamata	Ινιιγάζακι
		[-0.87]				Fulmation	
Treatment5			-13250.4			Гикиока	
			[-1.06]				
Treatment7				-6883.09			GroupCon
				[-0.7]		Group7	Kaqoshima
TreatmentCon					-28030.8	Kagoshima	Kumamoto
					[-0.65]	Kumamoto	Fukuoka
Constant	-665679	-665418	-665323	-665358	-658553	Fukuoko	Ocoko
	[-1.35]	[-1.35]	[-1.35]	[-1.35]	[-1.32]	FUKUUKa	Usaka
						Olta	Hyogo
Ν	799	799	799	799	799	Miyazaki	Okayama
R2	0.269215	0.269281	0.269291	0.269241	0.269779	Saga	Hiroshima
F	1.934589	2.106448	2.074548	2.100607	8.497174	Nagasaki	Yamaguchi

Note: Treatment2 = Time Dummy {1991-2003} x Group2. etc. t-values are in parenthesis. Legend: * p< 1; ** p< 05; *** p< 01. Clustering standard errors are used, allowing for heteroscedasticity and arbitrary autocorrelation within a prefecture, but treating the errors as uncorrelated across prefectures

Impact of Kyushu Shinkansen Rail on CORPORATE TAX revenue during 2nd PHASE OF OPERATION period {2011-2013}, mln. JPY (adjusted for CPI, base 1982)

1	1	1	1	1	1	1	1	1	1	1	1 19	1	1	1	1	1	2	2	2	22	2	2	2	2	2	2	2	2	2
9	9	9	9	9	9	9	9	9	9	9	9 94	9	9	9	9	9	0	0	0	0 0	0	0	0	0	0	0	0	0	0
8	8	8	8	8	8	8	8	9	9	9	9	9	9	9	9	9	0	0	0	0 0	0	0	0	0	0	1	1	1	1
2	3	4	5	6	7	8	9	0	1	2	3	5	6	7	8	9	0	1	2	34	5	6	7	8	9	0	1	2	3
		-		-	-			-		_	-	-	-	-	-	-	Ţ	_	_	•	-	•	-	-	-	•			

COMPOSITION OF GROUPS

Variable Treatment2	Regression 1 72330.012**	Regression 2	Regression 3	Regression 4	Regression 5	Group2 Kagoshima	Group5 Kagoshima
	[2.2]					Kumamoto	Kumamoto
Number of tax							Fukuoka
payers	5.5277056***	5.5585431***	5.558603***	5.5706545***	5.9640287***	Group3	Oita
T ()0	[3.13]	[3.14]	[3.14]	[3.14]	[3.07]	Kagoshima	Miyazaki
Treatment3		104664.34*				Kumamoto	,
Treatment5		[2]	80700 673**			Fukuoka	
riedinento			[2.1]				
Treatment7			[=]	80998.365**			GroupCon
				[2.34]		Group7	Kagoshima
TreatmentCon					179632	Kagoshima	Kumamoto
					[1.58]	Kumamoto	Fukuoka
Constant	-568133.98**	-5/3/4/.28**	-5/4245.8/**	-5/686/.56**	-642138.87**	Fukuoka	Osaka
	[-2.07]	[-2.08]	[-2.08]	[-2.09]	[-2.1]	Oita	Hvoqo
Ν	611	611	611	611	611	Mivazaki	Okavama
R2	0 350653	0 352058	0 352144	0 352874	0 364088	Saga	Hiroshima
<u>F</u>	5.062509	5.486197	5.351791	5.431088	<u>16.55518</u>	Nagasaki	Yamaguchi

Note: Treatment2 = Time Dummy {1991-2003} x Group2. etc. t-values are in parenthesis. Legend: * p<.1; ** p<.05; *** p<.01. Clustering standard errors are used, allowing for heteroscedasticity and arbitrary autocorrelation within a prefecture, but treating the errors as uncorrelated across prefectures

Total tax revenue, mln. JPY

Public-Private Partnership (PPP) Give incentives to operating entity

Payoff table for infrastructure operating entity and investors

	Normal Case	Effort Case
Normal Case	(50, r) Operating Investors Entity	(50, αr) Operating Investors Entity
Effort Case	(100, r) Operating Investors Entity	(100, αr) Operating Investors Entity

Possible Solutions Start up businesses, farmers

Naryski Teshino - Salhoko Kaji - Editori

Hometown Investment Trust Funds

X Stater Way to Supply Reb Capital

Hometown Investment Trust Funds

A Stable Way to Supply Risk Capital

Yoshino, Naoyuki; Kaji Sahoko (Eds.) 2013, IX, 98 p. 41 illus.,20 illus. in color

Available Formats:

ebook Hardcover Springer

Japan, Cambodia Vietnam, Peru

Investment in SMEs and start up businesses

すべてを失い再起を断念しそうになった時の

Agricultural Funds Beans and Wine

Access to Finance by SMEs and Large Firms in Japan

<Tankan¹>

Barriers for SMEs in Accessing Financial Institutions

Source: ADB–OECD study on enhancing financial accessibility for SMEs: Lessons from recent crises. Mandaluyong City, Philippines: Asian Development Bank, 2013

Examined Variable

No.	Symbol	Definition	Category
1	Equity_TL	Equity (book value)/total liabilities	Loverano
2	TL_Tassets	Total liabilities/total assets	Leverage
3	Cash_Tassets	Cash/total assets	
4	WoC_Tassets	Working capital/total assets	Liquidity
5	Cash_Sales	Cash/net sales	
6	EBIT_Sales	Ebit/sales	
7	Rinc_Tassets	Retained earnings/total assets	Profitability
8	Ninc_Sales	Net income/sales	
9	EBIT_IE	Ebit/interest expenses	Coverage
10	AP_Sales	Account payable/sales	A
11	AR_TL	Account receivable/total liabilities	Activity

Note: Retained earnings = the percentage of net earnings not paid out as dividends, but retained by the company to be reinvested in its core business or to pay debt. It is recorded under shareholders' equity in the balance sheet. Ebit = earnings before interest and taxes. Account payable = an accounting entry that represents an entity's obligation to pay off a short-term debt to its creditors. The accounts payable entry is found on a balance sheet under current liabilities. Account receivable = money owed by customers (individuals or corporations) to another entity in exchange for goods or services that have been delivered or used, but not yet paid for. Receivables usually come in the form of operating lines of credit and are usually due within a relatively short time period, ranging from a few days to a year.

Cluster analysis: the average linkage method

Dendogram Using Average Linkage

Factor Loadings of Financial Variables after Direct Oblimin Rotation

Variables	Component	_	_	
(Financial Ratios)	Z1	Z 2	Z 3	Z 4
Equity_TL	0.009	0.068	0.113	0.705
TL_Tassets	-0.032	-0.878	0.069	-0.034
Cash_Tassets	-0.034	-0.061	0.811	0.098
WoC_Tassets	-0.05	0.762	0.044	0.179
Cash_Sales	-0.937	0.021	0.083	0.009
EBIT_Sales	0.962	0.008	0.024	-0.004
Rinc_Tassets	0.014	0.877	0.015	-0.178
Ninc_Sales	0.971	-0.012	0.015	0.014
EBIT_IE	0.035	0.045	0.766	-0.098
AP_Sales	-0.731	-0.017	-0.037	-0.016
AR_TL	0.009	-0.041	-0.104	0.725

Note: The extraction method was principal component analysis, The rotation method was direct oblimin with Kaiser normalization.

Credit Rating of SMEs using Asian Data

(i) Sales(ii) Assets(iii) Liquidity (Cash)(iv) Total Debt

Grouping Based on Principal Component (Z1-Z2) and Cluster Analysis

Wind Power Fund Construction costs = 2 million US \$

Future Environment Relies on You

Various Wind power generators were constructed in Japan The fund constructed more than 16 areas of wind powers

Private Financial Scheme of Wind Power Collected by Individuals (started in 2001-9)

Financial Scheme of Wind Power Collected by Individuals

Solar Power Panel

Funds in Japan

Gross Debt / GDP of selected OECD Countries 2014

Note: General government gross financial liabilities as a percentage of GDP Source: OECD Economic Outlook No. 95 (database), **Publication Date:** 06 May 2014 **DOI:** 10.1787/gov-debt-table-2014-1-en

General Account Budget -Breakdown of Expenditure

(Note1) Figures may not add up to the totals due to rounding.

(Note2) The ratio of Social Security expenses to General Expenditures* : 54.0%

*General Expenditures equals to the Primary Expenditure minus Local Allocation Tax Grants, etc.

Table 1: Holders of Japanese and Greek Government Bonds, 2011

Hol Jap	lders of oanese Government Bonds	% of Total	Holders of Greek Government B	onds	% of Total
Bank and postal savings		45	Overseas investors		33
Life and non-life insurance		20	Domestic investors		21
Public pension funds		10	European Central Bank		18
Private pension funds		4	Bilateral loans		14
Bank of Japan		8	Social pension funds		6
Overseas investors		5	International Monetary Fund		5
Households		5	Greek domestic funds		3
Others		3			
	Banks and Postal Savings (201	5) JAPAI	N	27.8%	
	Bank of Japan (2015) JAF		N	21.2%	
	Life and Non-life Insurances (2015)			19.3%	
	Overseas' Investors (2015)			8.5%	
	Public Pension funds (2015)			6.4%	
	Private Pension Funds (2015)			3.4%	ADBInstitute

Balance Sheet of BOJ

Data Source: BOJ

Japanese Government Bond Yields

ADBInstitute

Figure 4: Interest Rates in Selected OECD countries

OECD = Organisation for Economic Co-operation and Development.

Figure 2: Government Bond Markets of Japan and Greece

Source: Yoshino and Taghizadeh-Hesary (2014a).

Figure 6. The Ineffectiveness of Monetary Policy in Japan

Yoshino and Sakakibara (2002) "The Current State of Japanese Economy and Remedies", Asian Economic Papers, MIT Press, Vol.1, No.2.

Table 3. Empirical Results (Sample: Q2 1990–Q4 2013)

 $y_{t} = -0.16 - 0.0002 (i - E\Delta p_{+1}) + 1.01 y_{t-1}$ (IS equation-1) (-1.98)* (-0.53) (147.63)** $R^{2} = 0.99 \text{ adjusted } R^{2} = 0.99 \text{ Durbin-Watson Statistic} = 1.70 \text{ Standard Error of regression} = 0.01$ (IS equation-2) (-2.36)* (1.17) (188.23)** $R^{2} = 0.99 \text{ adjusted } R^{2} = 0.99 \text{ Durbin-Watson Statistic} = 1.62 \text{ Standard Error of regression} = 0.01$ (IS equation-2) (m-p)_{t} = 0.02 + 0.70 y_{t} - 0.02 S_{t} + 0.99 (m-p)_{t-1}
(LM equation) (0.11) (2.67)** (-2.72)** (171.06)**

 $R^2 = 0.99$ adjusted $R^2 = 0.99$ Durbin-Watson Statistic = 1.93 Standard Error of regression=0.03

Yoshino, N., Taghizadeh-Hesary, F. (2015), 'An Analysis of Challenges Faced by Japan's Economy and Abenomics'. *Journal of Japanese Political Economy*. Routledge: Taylor and Francis, DOI: 10.1080/2329194X.2014.998591 Yoshino, N., Taghizadeh-Hesary, F. (2016). '*Causes and Remedies of Japan's Long Lasting Recession: Lessons for China'*. *China & World Economy*. *Vol 24 (2): 2016*

Reasons for Vertical IS curve

There are several reasons behind the vertical IS curve. First, excess capacity was created during the bubble period when companies invested significantly in various sectors, but demand suddenly slowed. Second, the high foreign direct investment of Japan in other Asian countries (because of the high appreciation of the yen and the high wage rates in Japan and because other Asian countries' growth was higher) reduced the domestic investment. Third, the marginal productivity of capital declined because profitable companies started to leave the country and invest abroad, while weaker companies remained in the country. Finally, startups could not grow because banks were reluctant to lend to them due to the strict Basel capital requirements, causing technological progress to slow down. These reasons will be further discussed in the following subsections.

> China & World Economy /1–25, Vol. 24, No. 1, 2016 Causes and Remedies of the Japan's Long-lasting Recession: Lessons for China

> > Naoyuki Yoshino, Farhad Taghizadeh-Hesary*

Domar Condition

The Domar condition is obtained from the government budget constraint as follows.

 $G_t + r_t B_{t-1} = \Delta B_t + T_t$ Government Budget Constraint (1)

Equation (1) states that government spending (G_t) + interest payments $(r_t B_{t-1})$ = new issue of government bonds (ΔB_t) + tax revenue (T_t) .

Dividing Equation (1) by GDP (Y_t) and rewriting Equation (1), we get

$$b_t - b_{t-1} = \frac{(r_t - \eta_t)}{1 + \eta_t} b_{t-1} + g_t - t_t$$
 Domar Condition (2)

where $b_t = B_t/Y_t$, $\eta_t = \Delta Y_t/Y_t$, $g_t = G_t/Y_t$, and $t_t = T_t/Y_t$

Bohn's Condition

- $PB_t = g_t t_t$ Primary Balance (PB)
- $PB_t = PB_1 + \mu(b_{t-1} b_0)$ Bohn's Rule: Primary Balance improvement Rule at t

$$\sum_{t=1}^{\infty} \frac{PB_t}{(\lambda)^t} = b_0$$

• Bohn's Rule satisfied with "transvesarity condition".

Disposable income is defined as income (Y_t) plus g, the interest received from government bonds by households $(r_t^B B_{t-1})$, minus the tax payment (T_t) as follows. The disposable income is divided into consumption (C_t) and savings (S_t)

$$YD_t = Y_t - T_t + r_t^B B_{t-1} = C_t + S_t$$

where $S_t = \Delta B_t + \Delta M_t + \Delta W_t^D$ (6)

Savings(S_t) = Government bonds(ΔB_t) + money demand (ΔM_t) + domestic deposits(ΔW_t^D).

$$I_t = i_0 - i_1 r_t \qquad \text{Investment Function} \qquad (7) \\ C_t = c_0 + c_1 Y D_t \qquad \text{Consumption Equation}^1 \qquad (8) \\ \Delta W_t^D = d_0 + d_1 Y D_t + d_2 r_t \qquad \text{Deposit equation} \qquad (9)$$

From Equations (6)-(9), we have the IS-balance equation.

$$1 - c_1)Y_t - c_1r_t^B B_{t-1} + i_1r_t = c_0 + i_0 + G_t - c_1T_t \quad \text{IS-Balance} \quad (10)$$

We assume that investment in the private sector will be financed by deposits in the banking sector. For convenience, with regards to the banking sector's behavior, it is simply assumed that savings are used for the purpose of investment.

 $\Delta W_t^D = I_t$ Saving-Investment Equilibrium (11)

By using Equations (10) and (11), we obtain income and the interest rate in the shortrun equilibrium as follows:

$$Y_{t}^{*} = \frac{1}{\Delta} \{ (d_{1} + i_{1})c_{0} + d_{1}i_{0} + i_{1}d_{0} + (d_{1} + i_{1} + d_{1}i_{1})G_{t} - ((d_{1} + i_{1})c_{1} + d_{1}i_{1})T_{t} + ((d_{1} + i_{1})c_{1} + d_{1}i_{1})r_{t}^{B^{*}}B_{t-1} \}$$
(12)
$$r_{t}^{*} = \frac{1}{\Delta} \{ (1 - c_{1})(i_{0} - d_{0}) - d_{1}(c_{0} + i_{0}) - d_{1}G_{t} + d_{1}T_{t} - d_{1}r_{t}^{B^{*}}B_{t-1} \}$$
(13)

Government Spending and Taxation Rules

From Equation (15), we obtain our government spending rule.

$$G_t - G_{t-1} = \alpha_1 (B_t - B_t^*) + \alpha_2 (\Delta B_t - \Delta B_t^*) + \alpha_3 (Y_t - Y_t^f)$$

Government Spending Rule (17)

ADBInstitute

where
$$\alpha_1 = \frac{w_1}{w_3} \left(\frac{B_{t-1}}{b_1 - B_{t-1}} + 1 \right)$$
, $\alpha_2 = \frac{w_5}{w_3} \left(\frac{B_{t-1}}{b_1 - B_{t-1}} + 1 \right)$, $\alpha_3 = -\frac{w_2}{w_3} \left(\frac{(d_1 + i_1) + d_1 i_1}{\Delta} \right)$
 $T_t - T_{t-1} = \beta_1 (B_t - B_t^*) + \beta_2 (\Delta B_t - \Delta B_t^*) + \beta_3 (Y_t - Y_t^f)$
Taxation Rule (18)

where
$$\beta_1 = -\frac{w_1}{w_4} \left(\frac{B_{t-1}}{b_1 - B_{t-1}} + 1 \right)$$
, $\beta_2 = -\frac{w_5}{w_4} \left(\frac{B_{t-1}}{b_1 - B_{t-1}} + 1 \right)$, $\beta_3 = \frac{w_2}{w_4} \left(\frac{(d_1 + i_1)c_1 + d_1i_1}{\Delta} \right)$.

From these two first-order conditions, we can find the relationship between G_t , T_t , $(B_t - B_t^*)$, $(\Delta B_t - \Delta B_t^*)$ and the primary balance.

$$PB_t - PB_{t-1} = (\alpha_1 - \beta_1)(B_t - B_t^*) + (\alpha_2 - \beta_2)(\Delta B_t - \Delta B_t^*) + (\alpha_3 - \beta_3)(Y_t - Y_t^J)$$
(19)

References

- McNelis, P and N, Yoshino (2012) "Macroeconomic Volatility under High Accumulation of Government Debt: Lessons from Japan", <u>Advances in Complex Systems</u>, Vol.15, Suppl. No.2, pp.1250057-1-1250057-29.
- Hoshi, T. and T. Ito (2014) "Defying Gravity: can Japanese sovereign debt continue to increase without a crisis?", <u>Economic Policy Journal</u>, Vol.29, Iss.7, pp.5-44.
- Yoshino, N. and E. Sakakibara (2002) "The Current State of Japanese Economy and Remedies", <u>Asian Economic Papers</u>, Vol.1, No.2, MIT Pres
- Yoshino, N. and T. Mizoguchi (2010) "The Role of Public Works in the Political Business Cycle and the Instability of the Budget Deficits in Japan", <u>Asian Economic</u> <u>Papers</u>, Vol.9, No.1, pp. 94-112.
- Yoshino, N. and T. Mizoguchi (2013a) "Change in the Flow of Funds and the Fiscal Rules Needed for Fiscal Stabilization", <u>Public Policy Review</u>, Vol.8, No.6, pp.775-793.
- Yoshino, N. and T. Mizoguchi (2013b) "Optimal Fiscal Policy Rule to Achieve Fiscal Sustainability: Comparison between Japan and Europe", Presented at Singapore Economic Review Conference 2013.
- Yoshino, N and U. Vollmer (2014) "The Sovereign Debt Crisis: Why Greece, but not Japan?", <u>Asia Europe Journal</u>, June, Vol.12, Iss.3, pp.325-341.
- Yoshino, N., Taghizadeh-Hesary, F. (2015), 'An Analysis of Challenges Faced by Japan's Economy and Abenomics'. <u>Journal of Japanese Political Economy</u>. Routledge: Taylor and Francis, DOI: 10.1080/2329194X.2014.998591
- Yoshino, N., T. Mizoguchi and Taghizadeh-Hesary, F. (2015) "Optimal Fiscal Policy Rule for Achieving Fiscal Sustainability: A Japanese Case Study', Asian Development Bank Institute, Working Paper, No. 531.
- Yoshino, N., Taghizadeh-Hesary, F. (2016). 'Causes and Remedies of Japan's Long Lasting Recession: Lessons for China'. <u>China & World Economy</u>. Vol 24 (2): 2016

